Silanes. Vibrational Assignments and Frequency Correlations

By George J. Janz and Yukio Mikawa*

(Received February 17, 1961)

Silanes have received widespread attention during the last decade and are of continuing current interest1-4). As part of a program in this laboratory on the vibrational spectra, molecular structure, and thermodynamic properties of this class of compounds, a review of the widely scattered results was undertaken to assess the status of our information. It became apparent in the course of this review that a need existed for a critical evaluation of the vibrational assignments, and for the interpretation of the normal frequencies on a series of simplified vibrational modes. This communication reports the results thus obtained, together with a useful table of generalized characteristic frequencies and bond distances based on this work.

Status

Information for about one hundred silanes, widely scattered in the published literature, was reviewed relative to the subjects: frequency

1959, 412.

assignment (FA), infrared spectra (IR), Raman spectra (R) molecular structure (M), thermodynamic properties (T), normal coordinate vibrational analyses (NC) and force constants (FC). For reference and guidance, the status of knowledge is presented in summary form in Table I.

Vibrational Spectra

Relative to the vibrations associated with the silicon atom and the surrounding four atoms attached with tetrahedral angles, all of the silanes considered can be classified into three groups based on the symmetry of molecule; SiX₄, SiXY₃ and SiX₂Y₂. The designation of normal vibrations, symmetry class and selection rules for each type of molecules are shown in Table II, where the symbols ν , δ and τ denote stretching, deformation and twisting vibrations, respectively, and the suffixes a, e, f and b denote the class of symmetry group to which the vibration belongs. The simplified vibrational modes for each type of molecule are illustrated in Figs. 1-3. It is recognized that the exact feature of the normal mode differs from molecule to molecule depending on the masses of atoms and the force constants of the bonds, and can be calculated by the normal

^{*} Present address: Research Laboratory, Mitsubishi Chemical Industries, Ltd. Kawasaki-shi.

H. Kriegsmann, Z. anorg. Chem., 299, 138 (1959).
 A. L. Smith and N. C. Angelotti, Spectrochim. Acta,

³⁾ R. N. Kniseley, V. A. Fassel and E. E. Conrad, abid., 1959, 651.

⁴⁾ H. W. Thompson, ibid., 16, 238 (1960).

TABLE I. STATUS OF KNOWLEDGE FOR SILANES

Silane	FA	IR	R	M	T	NC	FC	Ref.
SiH ₄	×	×	×	×	×	×	×	7—17
H_2SiD_2	×	×			×			17, 18
HSiD₃	×	×		×	×			1720
SiD ₄	×	×		, ,	×			1719
$H_3Si(CH_3)$	×	×		×		×	×	3, 21—23
$H_2Si(CH_3)_2$	×	×	~	^		×	×	21—25
			×	~				21—23
HSi(CH ₃) ₃	×	×	×	×		×	×	
Si(CH ₃) ₄	×	×	×	×	×	×	×	16, 17, 26—40
H ₈ SiCH=CH ₂	×	×						21
H ₃ SiC ₂ H ₅		×						21
$H_2Si(C_2H_5)_2$		×						21, 41
$HSi(C_2H_5)_3$		×						21
$Si(C_2H_5)_4$	×	\times	\times					21, 42, 43
$H_nSi(C_3H_7)_{4-n}*$		\times						41, 44, 45
Si(CH ₂ CH=CH ₂) ₄		\times						46
$H_3Si(C_4H_9)$		×						21, 45
$H_2Si(C_4H_9)_2$		×						41
$H_2Si(C_5H_{11})_2$		×						45
$H_3Si(C_6H_5)$		×						3, 73
$H_2Si(C_6H_5)_2$	×	×	×					41, 73
$HSi(C_6H_5)_3$		×						44, 73
$Si(C_6H_5)_4$		^		×				47
		~		^				3
$D_3Si(C_6H_5)$		×						
DSi(C ₆ H ₅) ₈		×						44
H ₈ SiC ₆ H ₁₁		×						45
$H_2Si(C_6H_{11})_2$		×						41
$H_3SiC_{10}H_9$		×						45
$(CH_3)_nSi(C_2H_5)_{4-n}*$			\times					35
$(CH_3)_2Si(C_3H_7)_2$		×						21
$(CH_3)_3Si(C_6H_5)$		×	×					48
al (Date)								10 52
Si(OCH ₃) ₄	×	×	×				×	49—53
Si(OC ₂ H ₅) ₄	×	×	×					49, 51, 54
$Si(OC_3H_7)_4$		×	×					49
$R_3Si(OR')**$	×	×	×					55
$R_2Si(OR')_2**$	×	\times	\times					55, 56, 115
RSi(OR') ₃ **	×	×	×			\times		55, 56, 109
a'r								16 17 57 62
SiF ₄	×	×	×	×	×	×	×	16, 17, 57—62
H₃SiF	×	×		×	×		×	17, 63—65
H_2SiF_2	×	×			×			17, 66, 67
HSiF ₃	×	\times		×	\times			17, 65—68
D ₃ SiF	×	×		×	×			17, 64, 65, 67, 69
D_2SiF_2	×	\times			×			17, 66
DSiF ₃	×	×			×			17, 66, 67
(CH₃)₃SiF	×	×	×	×				70, 71
(CH ₃) ₂ SiF ₂	×	×	×					25
(CH ₃)SiF ₃	×	×	×	×	×		×	17, 65, 72
CH ₃ SiH ₂ F	×	×						24
$(C_6H_5)_n SiF_{4-n}*$	×	×	×					73
, "								
SiCl ₄	×	×	×	×	×	×	×	5, 6, 14, 16, 17, 26—28, 52, 61, 62, 74, 79
H ₃ SiCl	×	×		×	×			14, 17, 75—78, 111
H ₂ SiCl ₂	×	×	×	×	×			3, 17, 24, 42, 80, 81, 85
HSiCl ₃	×	×	×	×	×	×	×	17, 19, 82—87
D ₃ SiCl	×	×	^	×	^		^	67, 69
230101	^	^		^				07, 02

TABLE I.	(Countinued)

		1	ABLE .	1. (C	ountin	uea)		
Silane	FA	IR	R	M	T	NC	FC	Ref.
(CH₃)₃SiCl	×	×	×	×	×	×	×	5, 17, 26—28, 43, 71, 8 91, 93—95
(CH ₃) ₂ SiCl ₂	×	×	×	×	×	×	\times	5, 17, 25—28, 43, 89, 9
(CH ₃)SiCl ₃	×	×	×	×	×	×	×	5, 17, 26—28, 43, 83, 88—91
CH ₂ =CHSiCl ₃	×	×						97
$(C_2H_5)_3$ SiCl	\times		×					42, 43
$(C_2H_5)_2SiCl_2$	×		×					42, 43
$(C_2H_5)SiCl_3$	\times	×	×					42, 43, 51
$(CH_2=CH-CH_2)_nSiCl_{n-4}*$		×						46
(C ₃ H ₇)SiCl ₃		×						51
(C₄H ₉)SiCl ₃		×						51
(C ₁₀ H ₇)SiCl ₃		×						96 73
$(C_6H_5)_nSiCl_{4-n}*$	×	×	×					43
CH ₃ SiCl ₂ H	×		×					43
C ₂ H ₅ SiCl ₂ H	×		×					
(CH ₃ O) _n SiCl _{4-n} *	×	×	×					50, 52, 55, 113
$(C_2H_5O)_nSiCl_{4-n}*$	×		×					54, 114
SiBr ₄	×		\times	\times	×	×	×	5, 12, 16, 17, 29, 74, 98
H ₃ SiBr	\times		×	\times	×	×	\times	12, 13, 17, 63, 100, 101
H_2SiBr_2	×	\times	×		×	×	×	13, 17, 80, 100, 102
HSiBr ₃	×		×	\times	×	×	×	12, 13, 17, 98, 102, 103
(CH₃)₃SiBr	×		×	×				29, 95, 104
$(CH_3)_2SiBr_2$	×	\times	×	×				25, 29, 104
$(CH_3)SiBr_3$	×		×	×				29, 104
SiI4	×		×	×	×	×	×	6, 17, 74, 105
H₃SiI	×	×		×			×	106—108
H_2SiI_2		×						24, 106
D ₃ SiI	×	\times					×	108
(CH ₃) ₃ SiI	×		×	×				95, 110
F ₃ SiCl				×				26, 65
F ₃ SiBr				×				65
F_2SiBr_2				\times				65, 98
$Cl_nSiBr_{n-4}*$	×	×	×	×	×	×	\times	6, 17, 74, 99, 111
Cl₃SiI	×		×		×	×	×	6, 17, 74
Cl_2SiI_2	×		\times			×	×	6, 74
ClSiI ₃	×		×		×	×	×	6, 17, 74
(CH₃)₃SiOH	×	×	×					71, 112
$(C_6H_5)_nSi(OH)_{4-n}*$	×	×	×					73
(CH ₃) ₃ SiSH	×	×	×					71

⁵⁾ T. Shimanouchi, I. Tsuchiya and Y. Mikawa, J. Chem. Phys., 18, 1306 (1950).

* n=1, 2, 3

** R, $R' = CH_3$ or C_2H_5

⁶⁾ M. Dewaulle, J. Phys. Chem., 56, 355 (1952); J. Am. Chem. Soc., 74, 5768 (1952).

⁷⁾ K. Venkateswarlu and S. Sundaran, J. Chem. Phys., 23, 2365 (1955).

K. J. W. Straley and H. H. Nielson, Phys. Rev., 62, 151 (1942).
 W. D. Steward and H. H. Nielson, ibid., 47, 828

^{(1935).} 10) C. H. Tindal, J. W. Straley and H. H. Nielson,

bid., 58, 1002 (1940). 11) F. B. Stett and D. M. Yost, J. Chem. Phys., 4, 82

H. Murata and K. Kawai, ibid., 23, 2451 (1955).
 T. Shimanouchi, ibid., 17, 245 (1949).
 C. Cerny and E. Erdos, Collection Czechoslov. Chem.

¹⁴⁾ C. Cerny and E. Erdos, Collection Czechoslov. Chem. Commun., 19, 646 (1954).
15) A. P. Atlshuler, J. Chem. Phys., 23, 761 (1955).
16) T. Shimanouchi, ibid., 17, 848 (1949).
17) Y. Mikawa, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 81, 1521 (1960). "Selected Values of Properties of Chemical Compounds", Ed. by F. D. Rossini, MCA Research Project, Carnegie Institute of Technology, Pittsburgh, Pa., to be published.
18) J. H. Meal and M. Kent Wilson, J. Chem. Phys., 24, 385 (1966).

^{385 (1956).}

- 19) S. R. Pola and M. K. Wilson, Harvard University, Project No. R-351-30-13 (1954).
- 20) D. R. J. Boyd, J. Chem. Phys., 23, 922 (1955).
- 21) S. Kaye and S. Tannenbaum, J. Org. Chem., 18, 1750 (1953).
- 22) A. C. Bond and L. O. Brockway, J. Am. Chem. Soc., 76, 3312 (1954).
- 23) I. F. Kovalev, Optics and Spectroscopy, 8, 166 (1960).
- 24) E. A. V. Ebsworth, M. Onyszchuk and N. Sheppard, J. Chem. Soc., 1958, 1453.
- 25) H. Kriegsmann, Z. Elektrochem., 62, 1033 (1958).
- 26) R. L. Livingston and L. O. Brockway, J. Am. Chem. Soc., 66, 94 (1944).
- 27) A. L. Smith, J. Chem. Phys., 21, 1997 (1953).
- 28) J. Goubeau, H. Siebert and M. Winterwerb, Z. anorg. u. allgem. Chem., 259, 240 (1949).
- 29) H. Murata and S. Hayashi, J. Chem. Phys., 19, 1217 (1951).
- 30) D. H. Rank, B. D. Saksean and E. R. Shull, Discussions Faraday Soc., 9, 187 (1950).
- 31) C. W. Young, J. S. Kohler and D. S. Mckinney, J. Am. Chem. Soc., 66, 1410 (1947).
- 32) F. Wall and C. R. Eddy, J. Chem. Phys., 6, 107 (1938).
- 33) D. H. Rank and E. R. Bordner, ibid., 3, 248 (1935).
- 34) S. Silver, ibid., 8, 919 (1940).
- 35) V. A. Kolesova, E. V. Kukharskaya and D. N. Andrew, Izvest. Akad. Nauk. S. S. S. R., Otdel. Khim. Nauk, 294 (1953).
- 36) I. Simon and H. O. McMahon, J. Chem. Phys., 20, 905 (1952).
- 37) J. G. Aston and R. M. Kennedy, J. Am. Chem. Soc., 62, 2567 (1940).
- 38) I. F. Kovalev, Optics and Spectroscopy, 5, 387 (1957).
 39) K. Shimizu and H. Murata, J. Mol. Spectroscopy, 5,
- 44 (1960).
- 40) H. Siebert, Z. anorg. u. allgem. Chem., 268, 177 (1952).
 41) R. West and E. G. Rochow, J. Org. Chem., 18, 303 (1953).
- 42) H. Murata, J. Chem. Phys., 18, 1308 (1950).
 43) H. Murata, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 73, 465 (1952).
 44) L. Kaplan, J. Am. Chem. Soc., 76, 5880 (1954).
- 45) H. E. Opitz, J. S. Peake and W. H. Nebergall, ibid., 78, 292 (1956).
- 46) R. E. Scott and K. C. Firsch, ibid., 73, 2599 (1951).
- 47) M. Yokoi, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 73, 822 (1952). 48) C. C. Cerato, J. L. Lauer and H. C. Beachell, J.
- Chem. Phys., 22, 1 (1954). 49) H. Kriegsmann and K. Licht, Z. Elektrochem., 62,
- 1163 (1958).
- 50) H. Murata, J. Chem. Phys., 20, 347 (1952).
- 51) A. L. Smith, Spectrochim. Acta, 16, 87 (1960).
 52) J. Goubeau and H. Behr, Z. anorg. u. allgem. Chem., 272, 2 (1953).
- 53) K. Iguchi, J. Chem. Phys., 22, 1937 (1954).
- 54) H. Murata, ibid., 20, 1184 (1952).
 55) R. Forneris and E. Funck, Z. Elektrochem., 62, 1130 (1958).
- 56) R. E. Richards and H. W. Thompson, J. Chem. Soc. 1949, 124.
- 57) D. M. Yost, E. M. Lassettre and S. T. Gross, J. Chem. Phys., 4, 325 (1936).
- 58) H. Urey and C. Bradley, Phys. Rev., 28, 1970 (1932).
- 59) F. L. Voelz, A. G. Meister and F. F. Cleveland, J. Chem. Phys., 19, 1084 (1951); 20, 1498 (1952).
- 60) E. A. Jones, Kirby-Smith, Woltz and Nielsen, ibid., 19, 242 (1951).
- 61) L. Pauling and L. O. Brockway, J. Am. Chem. Soc., 57, 2684 (1935).
- 62) H. Siebert, Z. anorg. u. allgem. Chem., 274, 34 (1953).
- 63) C. Newman, J. K. O'Loane, S. R. Polo and M. K. Wilson, J. Chem. Phys., 25, 855 (1956). 64) F. A. Andersen and B. Bak, Acta Chem. Scand., 8,
- 738 (1954).
- 65) J. Sheridan and W. Gordy, Phys. Rev., 77, 719 (1950).
- 66) M. K. Wilson, ASTIA-AD-120452 (Harvard 1957).
- 67) C. Newman, S. R. Polo and M. K. Wilson, Spectrochim. Acta, 15, 793 (1959).
- 68) G. A. Heath, L. F. Thomas and J. Sheridan, Trans. Faraday Soc., 50, 779 (1954).
- 69) B. Bak, J. Bruhn and J. Rastrup-Andersen, J. Chem. Phys., 21, 753 (1953).

- 70) R. G. Gunton, J. F. Ollom and H. N. Rexroad, ibid., 22, 1942 (1954).
- 71) H. Kriegsmann, Z. anorg. u. allgem. Chem., 294, 113 (1958).
- 72) R. L. Collins and J. R. Nielsen, J. Chem. Phys., 23, 351 (1954).
- 73) H. Kriegsmann and K. H. Schowtka, Z. Phys. Chem. (Leipzig), 209, 261 (1958).
- 74) Y. Kakiuchi, This Bulletin, 26, 260 (1953).
- 75) A. Monfils, J. Chem. Phys., 19, 138 (1951).
 76) A. Monfils, Compt. rend., 236, 795 (1953).

- 77) H. Sharabaugh, Phys. Rev., 74, 1870 (1948).
 78) B. P. Dailey, J. M. Mays and C. H. Townes, ibid., 76, 136 (1949).
- 79) L. O. Brockway and J. Y. Beach, J. Am. Chem. Soc.,
- 60, 1836 (1938). 80) J. Hawkins, S. Polo and M. K. Wilson, J. Chem-Phys., 21, 1122 (1953).
- 81) J. A. Hawkins and M. K. Wilson, ibid., 21, 360 (1953).
- 82) T. G. Gibian and D. S. McKinney, J. Am. Chem. Soc., 73, 1431 (1951).
- 83) R. C. Mockler, J. H. Bailey and W. Gordy, J. Chem. Phys., 21, 1710 (1953).
- 84) M. H. Pirene, Compt. rend., 206, 516 (1938).
- 85) L. O. Brockway and I. E. Coop, Trans. Faraday Soc., 34, 1429 (1938).
- 86) K. Yamasaki, A. Kotera, M. Iwasaki and N. Tatematsu, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 69, 104 (1953).
- 87) T. G. Gibian and D. S. Mckinney, J. Am. Chem. Soc., 73, 1431 (1951).
- 88) L. Burnelle and J. Duchesne, J. Chem. Phys., 20, 1324 (1952).
- 89) M. C. Tobin, J. Am. Chem. Soc., 75, 1788 (1953).
- 90) K. Shimizu and H. Murata, This Bulletin, 32, 46 (1959).
- 91) K. Shimizu and H. Murata, J. Mol. Spectroscopy, 4, 201 (1960).
- 92) K. Shimizu and H. Murata, ibid., 4, 214 (1960).
- 93) J. Duchesne, J. Chem. Phys., 16, 1006 (1948).
- 94) R. L. Livingston and L. O. Brockway, J. Am. Chem. Soc., 68, 719 (1946).
- 95) J. Goubeau and H. Sommer, Z. anorg. u. allgem. Chem., 289, 1 (1957).
- 96) J. W. Gilkey and L. J. Tyler, J. Am. Chem. Soc., 73, 4982 (1951).
- 97) E. R. Shull, R. A. Thursoch and C. M. Birdsall, J. Chem. Phys., 24, 147 (1956).
- 98) R. Spitzer, W. J. Howell, Jr., and V. Schomaker, J. Am. Chem. Soc., 64, 62 (1942).
- 99) B. Schneider and J. Pliva, Collection Czechoslov. Chem.
- Commun. Suppl., 19, 653 (1954).
 100) D. W. Mayo, H. E. Opitz and J. S. Peake, J. Chem-Phys., 23, 1344 (1955).
- 101) A. H. Sharbaugh, J. K. Bragg, T. C. Madison and
- V. G. Thomas, *Phys. Rev.*, 76, 1419 (1949). 102) F. Francois and M. Buisset, *Compt. rend.*, 230, 1946 (1950).
- 103) J. Wouters, M. Hemptinne and P. Capron, Am. Soc. Sci., Burxelles, Ser. I, 57, 25 (1937).
- 104) K. Yamasakı, A. Kotera, M. Yokoı and M. Iwasakı, J. Chem. Phys., 17, 1355 (1949).
- 105) P. W. Allen and L. E. Sutton, Acta Cryst., 3, 46-(1950).106) H. J. Emeléus, A. G. Macdiarmid and A. G. Mad-
- dock, J. Inorg. Nuclear Chem., 1, 194 (1955).
- 107) R. N. Dixon and N. Sheppard, Trans. Faraday Soc., 53, 282 (1957).
- 108) H. R. Linton and E. R. Nixon, Spectrochim. Acta, 12, 41 (1958).
- 109) T. Tanaka, This Bulletin, 33, 446 (1960). 110) H. N. Rexroad, D. W. Howgate, R. C. Gunton and J. Ollom, J. Chem. Phys., 24, 625 (1956).
- 111) B. P. Dailey, J. M. Mays and C. H. Towns, Phys. Rev., 76, 136 (1949). 112) W. S. Tatlock and E. G. Rochow, J. Org. Chem., 17,
- 1560 (1952).
- 113) H. Murata, K. Kawai and M. Yokoo, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 77, 893 (1956).
- 114) H. Murata and K. Kawai, ibid., 77, 1542 (1956).
- 115) M. Hayashi, ibid., 79, 436 (1958).

TABLE II. DESIGNATION OF NORMAL VIBRATIONS, SYMMETRY CLASS AND SELECTION RULES

Type of	Symmetry	metry Designation		ivity	Interpretation		
molecule	class	Designation	Raman	Infrared	Interpretation		
SiX4	A_1	$\nu_a(SiX_4)$	p*1	i*3	Symmetrical stretching		
	E	$\hat{o}_{e}(SiX_{4})$	d*2	i	The 1st kind of deformation		
	\mathbf{F}_2	$\nu_{\rm f}({\rm SiX_4})$	d	a*4	Asymmetrical stretching		
	\mathbf{F}_2	$\hat{\sigma}_{\mathrm{f}}(\mathrm{SiX_4})$	d	a	The 2nd kind of deformation		
$SiXY_3$	Α	$\nu_a(SiX)$	p	a	Stretching vibration		
	Α	$\nu_a(SiY_3)$	p	a	Symmetrical stretching		
	Α	$\delta_a(SiY_3)$	p	a	The 2nd kind of deformation		
	E	$\nu_{\rm e}({ m SiY_3})$	d	a	Asymmetrical stretching		
	E	$\hat{\sigma}_{\rm e}({ m SiY_3})$	d	a	The 1st kind of deformation		
	E	$\hat{\sigma}_{e}(SiXY_{3})$	d	a	Bending of SiX or wagging of SiY ₃		
SiX_2Y_2	\mathbf{A}_1	$\nu_{\rm a}({\rm SiX}_2)$	p	a	Symmetrical stretching		
	\mathbf{A}_1	$\nu_{\mathbf{a}}(\mathbf{SiY}_2)$	p	a	Symmetrical stretching		
	\mathbf{A}_{1}	$\hat{o}_{a}(SiX_{2})$	p	a	The 1st kind of deformation		
	A_1	$\hat{\sigma}_{a}(SiY_{2})$	p	a	The 1st kind of deformation		
	\mathbf{A}_2	$\tau(\mathbf{SiX}_2\mathbf{Y}_2)$	d	i	Twisting		
	$\mathbf{B_{i}}$	$ u_{ m b}({ m Si}{ m X}_2)$	d	a	Asymmetrical stretching		
	\mathbf{B}_1	$\hat{\sigma}_{\mathrm{b}}(\mathrm{SiX}_{2}\mathrm{Y}_{2})$	d	a	Rocking of SiX ₂ or wagging of SiY ₂		
	\mathbf{B}_2	$\nu_{\rm b}({ m SiY_2})$	d	a	Asymmetrical stretching		
	\mathbf{B}_2	$\hat{\sigma}_{\rm b}({\rm SiY}_2{\rm X}_2)$	d	a	Rocking of SiY_2 or wagging of SiX_2		
*1	polarized	*2 depolarize	d *	k3 inactive	*4 active		

coordinate treatment for the individual molecule.

 $\nu_a(SiX_4)$ in SiX_4 , $\nu_a(SiX_3)$ in SiX_3Y , $\nu_a(SiX_2)$ in SiX_2Y_2 and $\nu_a(SiX)$ in $SiXY_3$ are interpreted as symmetrical stretching vibrations of Si-X in which X atoms vibrate in phase back and forth in the direction of the bonds. $\nu_f(SiX_4)$ in SiX_4 , $\nu_e(SiX_3)$ in SiX_3Y and $\nu_b(SiX_2)$ in SiX_2Y_2 are interpreted as asymmetrical stretching vibrations of Si-X in which X atoms vibrate out of phase in the direction of the bonds. The deformation vibrations $\partial_e(SiX_4)$ in SiX_4 , $\partial_e(SiX_3)$ in SiX_3Y and $\delta_a(SiX_2)$ in SiX_2Y_2 make one group called the first kind of deformation vibrations. This kind produces the change in the angle between the two adjacent bonds. The second kind of deformation vibrations which inculdes $\delta_f(SiX_4)$ in SiX_4 and $\delta_a(SiX_3)$ in SiX_3Y is a symmetrical deformation vibration with respect to the threefold axes. As for $\delta_e(SiXY_3)$, two alternative ways for interpretation are possible. If X is a lighter atom than Y, $\delta_e(SiXY_3)$ should be interpreted as a bending of X, whereas, in the opposite case it should be interpreted as a wagging of Y_3 . $\delta_b(SiX_2Y_2)$ may be interpreted either as a wagging vibration in which

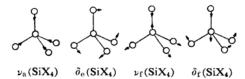
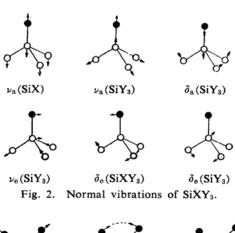



Fig. 1. Normal vibrations of SiX4.

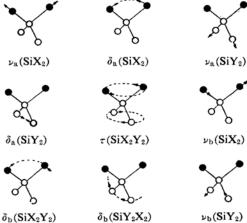


Fig. 3. Normal vibrations of SiX_2Y_2 .

two X atoms swing as a unit in SiX_2 plane or as a rocking vibration in which two Y atoms swing back and forth parallel to the same plane. The situation is the same for $\delta_b(SiY_2X_2)$ if X is replaced by Y and vice versa. $\tau(SiX_2Y_2)$ is interpreted as a twisting vibration of SiX_2 in respect to SiY_2 . This vibration depends upon the nature of the X atom as well as of the Y atom.

All of the published data are tabulated in Tables III—V in accordance with the above designations. Some values are from Raman spectra of the liquid state and some from infrared spectra of the liquid or gaseous states. In most instances, the differences in the frequencies reported with the different methods or by various investigators were not sufficiently

Table III. Normal frequencies of SiX4 type molecules

SiX ₄	$\nu_a(SiX_4)$	$\delta_{\rm e}({ m SiX_4})$	$\nu_f(SiX_4)$	$\hat{\sigma}_{\mathrm{f}}(\mathrm{SiX_4})$
SiH ₄	2187	974.6	2190.6	914.2
SiD ₄	(1582) ^c	(689)c	1597	681
SiF ₄	800	268	1031	391
SiCl ₄	424	150	610	221
SiBr ₄	249	90	487	137
SiI.	168	63	405	94
Si(CH ₃) ₄	598	202	696	239
$Si(C_2H_5)_4$	553	160	736	303
Si(OCH ₃) ₄	640	251	844	308
$Si(OC_2H_5)_4$	654	240	792	305

c: Calculated value

TABLE IV. NORMAL FREQUENCIES OF SIXY3 TYPE MOLECULES

SiXY ₃	$\nu_a(SiX)$	$\nu_a(\mathrm{SiY_3})$	$\hat{\sigma}_{a}(SiY_{3})$	$\nu_e(SiY_3)$	$\hat{o}_{\mathrm{e}}(\mathrm{SiY_3})$	$\delta_{\rm e}({\rm SiXY_3})$
SiHD ₈	2182	1573	683	1598	683	851
SiHF ₃	2314.5	858.6	425.2	998.6	305.5	844.5
SiHCl ₃	2274	497	250	600	179	810
SiHBr ₃	2234	360	168	470	113	767
SiDF ₃	1688	854	421.9	994.4	302.2	628.5
SiFH ₃	872.0	2206	989.7	2196	943.4	728.1
$SiFD_3$	888	1577	704	1615	(764) ^c	549
SiClH ₃	551	2201	949	2195	954.4	664.0
$SiClD_3$	538	1581	702	1616	(734) ^e	488
SiClBr ₃	583	291	173	489	102	159
SiClI ₃	557	220	114	411	73	134
SiH(CH ₃) ₃	2118	625	219	718	251	908
$SiF(CH_3)_3$	898	620	206	695	259	290
SiCl(CH ₃) ₃	487	640	242	700	188	330
$SiCl(C_2H_5)_3$	464	592	221	739	160	295
SiCl(OCH ₃) ₃	510	717	264	845	-	357 ?
$SiCl(OC_2H_5)_3$	520	695	290	799		_
SiBrH ₃	430	2200	930	2196	950.4	632.6
SiIH ₃	362	2192	903	2206	941	592
$SiID_3$	352	1575	664	1607		435
SiBrCl ₃	368	545	191	610	205	135
SiICl ₃	333	519	169	600	197	123
$SiBr(CH_3)_3$	373	632	238	704	177	214
$SiI(CH_3)_3$	331	627	231	704	164	198
$Si(CH_3)H_3$	700	2167	940	2167	980	540
$Si(CH_3)F_3$	700	900	390	982	332	229
Si(CH ₃)Cl ₃	764	458	229	577	163	229
$Si(CH_3)Br_3$	746	314	153	453	98	186
$Si(C_2H_5)Cl_3$	715	447	187	580	152	224
Si(OCH ₃)Cl ₃	808	450	226	602	170	295
$Si(OC_2H_5)Cl_3$	775	475	215	603	171	249

C: calculated value

great to be of concern relative to the problem of the characteristic frequencies for the molecules. The assignments in the literature were, in large part, without ambiguity for most of the silanes in Tables III—V. Some new assignment are proposed in the light of the correlation rule developed in this work. For

Si(CH₃)₃Cl, 188 cm⁻¹ should be assigned to $\delta_e(SiC_3)$ because the first kind of deformation vibration of Si-C usually appears near 200 cm⁻¹; and $\delta_e(SiC_3)$ should lie at a lower frequency than $\delta_a(SiC_3)$ as in the case of ethyl chlorosilanes. For Si(CH₃)₂Cl₂, 241 cm⁻¹ should be assigned to $\delta_b(SiC_2Cl_2)$, which belongs to B₁

TABLE	V.	NORMAL	FREQUENCIES	OF	SiX_2Y_2	TYPE	MOLECULES
-------	----	--------	-------------	----	------------	------	-----------

SiX_2Y_2	να(SiX_2)	$\nu_a(SiY_2)$	$\delta_a(SiX_2)$	$\delta_a(SiY_2)$	$ν_b(SiX_2)$	$v_b(SiY_2)$	$\tilde{\mathfrak{o}}_b(\mathbf{SiX}_2\mathbf{Y}_2)$	$\hat{a}_{b}(SiY_{2}X_{2})$	$\tau(\mathbf{S}\mathrm{i}\mathbf{X}_{2}\mathbf{Y}_{2})$
SiH_2D_2	2189	1587	944	682.5	2183	1601	743	862	(844) ^c
SiH_2F_2	2245	870	984.8	321.7	2250	(978)c	728.2	(905)c	(785)°
SiH ₂ Cl ₂	2200	531	953	188	2200	592	610	877	710
SiH_2Br_2	2206	393	925	122	2232	456	556	828	688
$SiH_2(CH_3)_2$	2143	954	658	228	2165	732	875	472	703
SiD_2F_2	1614	878.5	708	319	1619	950	579.2	680.2	(563)e
$SiCl_2Br_2$	563	326	191	111	605	508	144	182	122
$SiCl_2I_2$	538	276	160	83	589	418		149	111
$Si(CH_3)_2F_2$	670	828	213	330	786	952	271	496	213
$Si(CH_3)_2Cl_2$	688	473	232	168	805	553	241	298	177
$Si(C_2H_5)_2Cl_2$	695	458	190	157	746	650?	241	299	
Si(OCH ₃) ₂ Cl ₂	772	481	250	183	851	590	315	364	_
$Si(OC_2H_5)_2Cl_2$	744	490	240	-	813	598	295		
$Si(CH_3)_2Br_2$	682	355	208	118	797	426	208	208	166

c: Calculated value

TABLE VI. CHARACTERISTIC FREQUENCIES FOR SILANES

		Number of data			Number of data
Si-H		or data	Si-F		or data
Stretching			Stretching		
a) symm.	2118~2315 cm ⁻¹	16	a) symm.	800∼ 900 cm ⁻¹	10
b) asymm.	2142~2250 cm ⁻¹	11	b) asymm.	950~1031 cm ⁻¹	7
Deformation			Deformation		
a) 1st kind	925∼ 985 cm ⁻¹	11	a) 1st kind	268∼ 332 cm ⁻¹	7
b) 2nd kind	903∼ 990 cm ⁻¹	6	b) 2nd kind	390∼ 425 cm ⁻¹	4
Si-D			Si-Cl		
Stretching			Stretching		
a) symm.	1573~1688 cm ⁻¹	8	a) symm.	424∼ 583 cm ⁻¹	23
b) asymm.	1597~1649 cm ⁻¹	7	b) asymm.	577∼ 610 cm ⁻¹	15
Deformation			Deformation		
a) 1st kind	683∼ 708 cm ⁻¹	6	a) 1st kind	$150\sim 205\mathrm{cm}^{-1}$	15
b) 2nd kind	664∼ 704 cm ⁻¹	5	b) 2nd kind	169∼ 250 cm ⁻¹	8
Si-C			Si-Br		
Stretching			Stretching		
a) symm.	553∼ 764 cm ⁻¹	18	a) symm.	249∼ 373 cm ⁻¹	10
b) asymm.	695∼ 805 cm ⁻¹	13	b) asymm.	426∼ 507 cm ⁻¹	7
Deformation			Deformation		
a) 1st kind	160∼ 232 cm ⁻¹	12	a) 1st kind	90∼ 118 cm ⁻¹	7
b) 2nd kind	221∼ 303 cm ⁻¹	8	b) 2nd kind	137∼ 173 cm ⁻¹	4
Si-O			Si-I		
Stretching			Stretching		
a) symm.	640∼ 808 cm ⁻¹	8	a) symm.	168∼ 362 cm ⁻¹	7
b) asymm.	782∼ 851 cm ⁻¹	6	b) asymm.	405∼ 418 cm ⁻¹	3
Deformation			Deformation		
a) 1st kind	240∼ 251 cm ⁻¹	4	a) 1st kind	63∼ 83 cm ⁻¹	3
b) 2nd kind	264∼ 308 cm ⁻¹	4	b) 2nd kind	94∼ 114 cm ⁻¹	2

Si-Y

			TABLE Y	VII. BOND	LENGTHS			
				(a) SiX ₄				
	SiH ₄	SiD ₄	SiF ₄	SiCl ₄	SiBr ₄	SiI4	Si(CH ₃) ₄	
Si-X(Å)	1.48	1.48	1.54	2.02	2.15	2.46	1.90	
				(b) SiX ₃ Y				
	SiH ₃ F	SiF ₃ H	SiD ₃ F	SiF ₂ D	SiH ₃ Br	SiBr ₃ H	SiHCl ₃	SiCl ₃ H
Si-X	1.48	1.56	1.48	1.56	1.48	2.16	1.48	2.02
Si-Y	1.59	1.48	1.59	1.48	2.21	1.48	2.05	1.48
	SiCl ₃ Br	SiBr ₃ Cl	SiD ₃ H	$SiF_3(CH_3)$	SiCl ₃ I	SiI ₃ Cl	Si(CH ₃) ₃ Cl	SiCl ₃ (CH ₃)
Si-X	2.02	2.15	1.48	1.55	2.02	2.46	1.87	2.02
Si-Y	2.15	2.02	1.48	1.88	2.46	2.02	2.03	1.88
				(c) SiX_2Y_3	2			
	SiH_2F_2	SiD_2F_2	SiH_2Br_2	SiH ₂ Cl ₂	$SiCl_2Br_2$	SiH_2D_2	Si(CH ₃) ₂ Cl ₅	2
Si-X	1.48	1.48	1.48	1.48	2.02	1.48	1.87	

2.05

2.15

and $298\,\mathrm{cm^{-1}}$ to $\hat{\sigma}_b(\mathrm{SiCl_2C_2})$, which belongs to B_2 . This assignment is justified from the result of the normal coordinate treatment in which $245\,\mathrm{cm^{-1}}$ and $304\,\mathrm{cm^{-1}}$ were calculated⁵⁾ for $\hat{\sigma}_b(\mathrm{SiC_2Cl_2})$ and $\hat{\sigma}_b(\mathrm{SiCl_2C_2})$, respectively. For the antisymmetrical stretching vibration of $\mathrm{Si\text{--I}}$ in $\mathrm{SiCl_2I_2}$ two Raman lines $418\,\mathrm{cm^{-1}}$ and $346\,\mathrm{cm^{-1}}$ are reported by Dewaulle⁶⁾. 418 cm⁻¹ should be assigned to $\nu_b(\mathrm{SiI_2})$ but 436 cm⁻¹ is preferably assigned as a combination, $276+160=436\,\mathrm{cm^{-1}}$.

1.59

2.21

1.59

Discussion of Characteristic Frequency Assignments

The survey of the normal frequencies listed in Tables III-V shows that symmetrical stretching vibrations, or $\nu_a(SiX_4)$ in SiX_4 , $\nu_a(SiX_3)$ in SiX_3Y , $\nu_a(SiX_2)$ in SiX_2Y_2 and ν_a(SiX) in SiXY₃ appear in a narrow frequency range characteristic for the Si-X. In Table VI the characteristic frequencies ranges and the number of the data from which the ranges have been decided are tabulated. The generalized values of the bond lengths, similarly from this review, are listed in Table VII. More detailed inspection shows the correlation: $\nu_a(SiX_4)$ $<\nu_a(SiX_3)<\nu_a(SiX_2)<\nu_a(SiX)$, where X represents C, O, F, Cl, Br and I. Since the Raman line due to this vibration is generally a sharp, strong, and polarized line, this frequecy may be used as a key frequency for the S-X symmetrical stretching mode.

The asymmetrical stretching vibrations: $\nu_f(SiX_4)$ in SiX_4 , $\nu_e(SiX_3)$ in SiX_3Y , and $\nu_b(SiX_2)$ in SiX_2Y_2 , also occur in a narrow range, characteristic for Si-X. These occur, without exception, in a higher frequency range than the corresponding symmetrical stretching vibrations. Since the infrared band due to this

vibration is very strong, this may be used as a key band for Si-X if it lies in a region available for infrared measurements.

2.03

1.48

If the term "deformation vibration" defines the type of nomal vibration in which some of the atoms vibrate in the direction perpendicular to bands then all the other types of vibrations are included in this category. Among these, the first and the second kind of deformation vibrations may be expected as characteristic frequencies, since these fall in a rather narrow range as defined by the bonds concerned. These are included in Table VI. For Si-H or Si-D, the ranges for the first kind and the second kind of deformation vibrations overlap each other. For the rest, in most of the cases, the second kind of deformation occurs at a higher frequency range than the first kind.

The other types of vibrations such as $\delta_e(\text{SiXY}_3)$, $\delta_b(\text{SiX}_2\text{Y}_2)$ and $\tau(\text{SiX}_2\text{Y}_2)$ are generally found as broad frequency ranges so that it is difficult to assign a characteristic frequency. However, if one or more hydrogens are present, the modes: $\delta_e(\text{SiHX}_3)$, $\delta_e(\text{SiH}_3\text{X})$, $\delta_b(\text{SiH}_2\text{X}_2)$, $\delta_b(\text{SiX}_2\text{H}_2)$ and $\tau(\text{SiH}_2\text{X}_2)$ could be characteristic, each for their own structure since the mass of the hydrogen is so very small, relative to the rest of the system.

Generally, as the mass of the atom attached to the silicon atom increases, there is a corresponding decrease in frequency for both the stretching and deformation vibrations. The effect of electronegativity on the frequency of a particular vibration is, however, striking. Thus, for example, the symmetric stretching vibrations of Si-F occur in a higher frequency range than those of Si-C even though the atomic weight of fluorine is greater than that of carbon.

Si-H.—The symmetrical stretching vibration

of Si-H appears in the range $2118\sim2315\,\mathrm{cm}^{-1}$. If the molecule has more than two Si-H bonds, the asymmetrical stretching vibration is also observed in the range $2142\sim2250\,\mathrm{cm}^{-1}$ in addition to the symmetrical vibration. The asymmetrical mode falls, as expected, in a higher range than the symmetrical mode. The general correlation: $\nu_a(\mathrm{SiH_3X}) < \nu_a(\mathrm{SiH_2X_2}) < \nu_a(\mathrm{Si-HX_3})$ is true for all of the halogenated silanes. It is striking that in the series of methyl silanes the Si-H symmetric stretching frequencies decrease appreciably as the number of methyl groups increases.

Relative to the deformation vibration, both the first and the second kinds of deformations appear in an almost identical frequency range, 903~990 cm⁻¹. The separation is rather small and, in most of the cases, the higher frequency is assigned to the first kind of deformation.

Since the mass of the hydrogen atom is very small compared with the others, vibrations such as $\delta_e(SiX_3H)$, $\delta_e(SiH_3X)$, $\delta_b(SiH_2X_2)$, $\delta_b(SiX_2H_2)$ and $\tau(SiH_2X_2)$ may be considered as the hydrogen bending or deformation vibrations. Although examples for these modes are very limited at present, it is apparent that these are to be found in the following ranges:

```
\hat{\sigma}_{e}(SiX_{3}H) 767~908 cm<sup>-1</sup> (5 examples)

\hat{\sigma}_{e}(SiH_{3}X) 540~728 cm<sup>-1</sup> (5 examples)

\hat{\sigma}_{b}(SiH_{2}X_{2}) 469~919 cm<sup>-1</sup> (5 examples)

\hat{\sigma}_{b}(SiX_{2}H_{2}) 828~919 cm<sup>-1</sup> (5 examples)

\tau(SiH_{2}X_{2}) 688~844 cm<sup>-1</sup> (5 examples)
```

Si-D.—Eight deuterated silanes were used in assigning the frequency range of the Si-D vibration. Although deuterium has twice the atomic weight of hydrogen, the Si-D vibration can still be regarded as that of a very light atom vibrating against an atom of infinite mass. Thus many features of this class resemble the case of Si-H.

The symmetrical stretching vibrations occur in the range of $1573 \sim 1688 \, \mathrm{cm}^{-1}$ while the asymmetrical stretching vibrations occur in the region $1597 \sim 1649 \, \mathrm{cm}^{-1}$. The higher frequencies are always assigned to the non-symmetrical vibrations. It is striking that the stretching vibration of Si-D in SiDF₃ has very high frequency ($1688 \, \mathrm{cm}^{-1}$) compared with the stretching vibration of Si-D in the other compounds. This is the same as in the case of SiHF₃, where $\nu_{\alpha}(\mathrm{SiH})$ was assigned to $2314.5 \, \mathrm{cm}^{-1}$, which seems an extraordinarily high value for the stretching vibration of Si-H.

The Si-D deformation vibrations, both the first kind and the second kind, occur in the frequency range 664~708 cm⁻¹, and higher frequencies are assigned to the second kind of deformation.

Si-C.—The Si-C symmetrical stretching vibrations occur in the frequency range of 553~ 764 cm⁻¹ while the asymmetrical stretching vibrations occur in the range of 695~805 cm⁻¹. The tendency of the frequency shift depending on the number of the carbon atoms attached to the silicon atom is apparent, i.e., $\nu_a(SiC_4)$ $<\nu_a(SiC_3)<\nu_a(SiC_2)<\nu_a(SiC)$. For the asymmetrical stretching vibrations, the relation, $\nu_f(SiC_4) < \nu_e(SiC_3) < \nu_e(SiC_2)$ is also true, if a particular series, such as Si(CH₃)₄-Si(CH₃)₃Cl -Si(CH₃)₂Cl₂, is considered. The deformation vibrations occur in the frequency range 160~ $259 \,\mathrm{cm}^{-1}$ for the first kind, and $206 \sim 303 \,\mathrm{cm}^{-1}$ for the second kind. The latter appaears, without exception, in a higher frequency range than the former.

Si-O-C.—The Si-O symmetrical stretching vibrations in the linkage of Si-O-C occur in the frequency range of $640 \sim 808 \, \mathrm{cm^{-1}}$, while the asymmetrical stretching vibrations occur in the range of $792 \sim 851 \, \mathrm{cm^{-1}}$. The frequencies of the symmetrical stretching vibrations decrease as the number of methoxy or ethoxy groups attached to the silicon atom increases, i.e.: $\nu_a(\mathrm{SiO_4}) < \nu_a(\mathrm{SiO_3}) < \nu_a(\mathrm{SiO_2}) < \nu_a(\mathrm{SiO})$. The asymmetric vibration frequencies are concentrated in a rather narrow range, and the correlation $\nu_f(\mathrm{SiO_4}) < \nu_e(\mathrm{SiO_3}) < \nu_e(\mathrm{SiO_2})$ is true for any series, such as: $\mathrm{Si}(\mathrm{OCH_3})_4 - \mathrm{Si}(\mathrm{OCH_3})_3 - \mathrm{Cl} - \mathrm{Si}(\mathrm{OCH_3})_2 \mathrm{Cl_2}$.

Owing to the very limited data, the frequency range for the deformation vibrations can not be decided with any certainty. From the available information, it appears that the first and second kinds of deformation vibrations occur in the range 240~308 cm⁻¹.

Si-Halogen. — The Si-halogen modes occur in the range of 168~1031 cm⁻¹. The broad frequency range is due to the large variations in atomic weights for the halogen atoms, i. e.: F=19.00 to I=126.9. As the atomic weight of the atom attached to the silicon atom increases, a corresponding decrease in the frequency of the symmetrical and asymmetrical Si-X stretching vibrations is observed. For example, in the SiX₄ series, the Si-X stretching frequency decreases in the order: $800\sim424-249\sim168\,\mathrm{cm}^{-1}$, for SiF₄, SiCl₄, SiBr₄ and SiI4 respectively. In any series of the type $SiX_4-SiX_3Y-SiX_2Y_2-SiXY_3$, where X is a halogen atom and Y is different or a non-halogen atom, the frequencies of the symmetrical stretching vibration, i. e., $\nu_a(SiX_4)$, $\nu_a(SiX_3)$, $\nu_a(SiX_2)$, $\nu_a(SiX)$, increase as the number of the halogen atoms attached to the silicon atom decreases. By contrast, the frequencies of the asymmetrical stretching vibrations: $\nu_f(SiX_4)$, $\nu_e(SiX_3)$ and $\nu_b(SiX_2)$ do not show this trend. It is apparent that these are limited to narrower ranges than

1504 [Vol. 34, No. 10

the symmetrical vibrations. Thus, for Si-Cl, the range of the symmetrical frequencies is 424~583 cm⁻¹ whereas the range of the asymmetrical is 577~610 cm⁻¹. It is also seen that the asymmetrical modes always occur in a higher frequency range than the corresponding symmetrical stretching modes. The first kind of deformation vibrations occurs in a definite region for each kind of halogen, e. g.: $\delta_e(SiCl_4)$ in SiCl₄, δ_e (SiCl₃) in SiCl₃Y and δ_a (SiCl₂) in SiCl₂Y₂. All are in the range, 150~205 cm⁻¹. The second kind of deformation vibrations usually occurs in a higher frequency range than the first kind. The other deformation vibrations occur in a range so wide that to list it would be of little significance.

Summary

The status of knowledge relative to the vibrational assignments, molecular structure, and

spectral data for a series of about one hundred silanes has been surveyed and is reported in brief tabular form. A scheme of simplified vibrational modes is discussed, and used to develop the assignment of fundamentals for some fifty five silanes. Some new assignments are proposed in the light of a correlation rule which has been developed. Tables of characteristic frequencies, and the best values for bond distances, based on this work, are presented.

The authors wish to thank Fred Behnke for assitance with the compilation of the literature and the summary in Table I. This work was made possible, in part, by a grant from the National Science Foundation, Washington, D. C.

Department of Chemistry Rensselaer Polytechnic Institute Troy, New York, U.S.A.